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The response of a symmetric bistable system driven by a time-periodic rectangular force modeled by the
Jacobian elliptic function sn is studied in two limiting situations: overdamping and weak damping. For the
overdamping case, the appearance of responses with the same shape and period as the driving force is ex-
plained in terms of ageometrical resonancephenomenon. The distortion of the response under changes in the
forcing period and shape is also considered. For weak damping, the reduction of homoclinic chaos as the
driving shape approximates the geometrical resonance forcing shape is explained by means of Melnikov’s
analysis in the asymptotic case of infinite period driving.@S1063-651X~96!08912-X#

PACS number~s!: 05.45.1b

I. INTRODUCTION

Resonance is a key concept throughout the physical sci-
ences and engineering. From Galileo’s initial discussion in
1638 @1# to applications in highly nonlinear oscillators,
where the response to harmonic driving forces can be deter-
mined using various methods@2–6#, the notion of resonance
~nonlinear resonance! has been identified with how well the
driving periodTd fits ~a rational fraction of! a natural period
To of the underlying conservative system. Indeed, nonlinear
resonance arises@7# as the direct extension of the usual con-
cept in the linear limiting case, where the resonance response
is regarded as the largest response, to the nonlinear~general!
case, where, on the contrary, the response to harmonic driv-
ing forces is typically small and complicated@8#. Recently, it
has been proposed@9# that the so-called geometrical reso-
nance ~GR! should really be considered the natural,fully
nonlinearextension of the usual concept. For systems with
periodic motions, GR means that the amplitude, period, and
wave form~shape! of the driving signal must suitably fit to
preservea previously chosen natural periodic response from
the underlying conservative system, if dissipation is consid-
ered, or from an equivalent conservative system for driven
Hamiltonian systems. In both cases, the GR condition is de-
rived from alocal energy conservation requirement@9#.

In this work I first attempt to explain and extend some
previous results, obtained numerically, by using the notion of
GR. The system to be studied is an overdamped bistable
model @10# subjected to an external periodic modulation

dx

dt
5x2x31F sn~vt;m!, ~1!

where sn(vt;m)is the Jacobian elliptic function of parameter
m and periodT @v5v(m)[4K(m)/T with K(m) the com-
plete elliptic integral of the first kind@11##. Whenm50, then
sn(vt;m50)5sin(vt), i.e., one recovers the limit case of
harmonic forcing. In the other limit,

sn~vt;m51!5
4

p (
n50

`
1

2n11
sin@~2n11!2pt/T#, ~2!

i.e., one obtains the Fourier expansion of thesquare wave
function of periodT @12#. With T constant, only the forcing
shape is varied by increasingm from 0 to 1, and there is thus
a smooth transition from a sine function to a square wave. In
Ref. @13#, the corresponding forcing term in~1! was an ap-
proximation to a rectangular signal with amplitudeF and
periodT, generated by a Fourier series with 20 odd harmon-
ics. The authors found numerically that, for each value of
T, there exists a corresponding amplitudeF* (T) such that
for F,F* the motion is essentially confined within the ini-
tial well, while for F.F* the system trajectories explore
both wells, describing large-amplitude oscillations around
the origin. Away from the critical lineF* (T), the shape of
the response coincides basically with that of the forcing,
while near the critical line the output has a very distorted
shape, though it is still periodic with the same periodT. As
will be shown, these results naturally arise from an analysis
of the GR responses.

The second goal of this paper is to demonstrate, for the
weak damping limiting case, that the stability of homoclinic
chaos arising from the whole bistable system

ẍ5x2x32d ẋ1F sn~Vt;m! ~28!

@ ẋ[dx/dt, 0,d, F!1, V5V(m)[4K(m)/T], as the
driving shape is varied, is also explained in terms of GR.

The rest of the paper is organized as follows. Section II
gives the results concerning the GR analysis of the bistable
system~1!, where the forcing term is initially taken to be an
indefinite T-periodic function. Further, it is demonstrated
that when the forcing is given by a square wave function the
GR requirements are almost exactly satisfied and an
amplitude-responsecurve is deduced that indicates that the
bistable system should, near a certain GR, exhibit a jump
phenomenon. In Sec. III, a numerical study illustrates the
accuracy and scope of the theoretical derivations. Section IV
is devoted to analyzing the decrease~in parameter space!*Electronic address: rchacon@unex.es
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of homoclinic chaos arising from the symmetric bistable sys-
tem ~namely, the two-well Duffing oscillator@3,5#!, sub-
jected to both weak damping and small-amplitude sn forcing
@Eq. ~28)#, whenm→1 andT→`. It is shown theoretically,
by using Melnikov’s method, that the mechanism underlying
the regularization of the dynamics is the approximation to a
GR solution. Finally, Sec. V includes a summary of the re-
sults and conclusions.

II. OVERDAMPING:
GEOMETRICAL RESONANCE ANALYSIS

Without regard for any specific physical context at the
outset, let us begin with the overdamped model

dx

dt
52U8~x!1F f ~ t !, ~3!

where f (t) is ana priori arbitraryT-periodic function with
unit amplitude and the prime refers to the derivative of the
arbitrary potentialU(x). Observe that the precise character-
istic of the GR, for a general system to be driven, is that of
preservinga given natural response~whether periodic or not!
of the unperturbed system. Now, with that in mind, let us

consider the special~steady! solutionsxs(t), with amplitude
A, such thatxs(t)5Af(t), i.e., when the external excitation
and the response have both the same period~usual reso-
nance! and the same shape, including when the natural re-
sponses are not periodic. Under this assumption, the dynam-
ics is equivalent to that of a particle having total energyE
given by

E5 1
2 ẋs

21Ueq~xs!5const, ~4!

with

Ueq~xs![2FFA xs2U8~xs!G2 ~5!

theequivalent potential@14#. With E[0 ~the system is over-
damped! one directly obtains the solutions corresponding to
the general model~3!,

E
x0

x dx

Fx/A2U8~x!
5t. ~6!

For the two-well potential@cf. Eq. ~1!#, the particular re-
sponses~6! are

x~ t !55
6Auhu

2 F x0
2

uhu1x0
2G1/4e2uhut/2 csch1/2$uhut2 1

2 ln@x0
2/~ uhu1x0

2!#%, h,0

6x0@112x0
2t#21/2, h50

6Ah

2F x0
2

h2x0
2G1/4eht/2sech1/2$ht1 1

2 ln@x0
2/~h2x0

2!#%, h.0,

~7a!

~7b!

~7c!

with x(t50)56x0, and

h[11
F

A
. ~8!

Observe that the asymptotic behavior is that of equilibrium
states

lim
t→`

x~ t ![xs~ t !5H 0, h<0

6Ah, h.0,
~9!

which do not depend on the initial conditionx0. It is worth
mentioning that the above scheme is similar to that employed
in seeking traveling waves of permanent form~the so-called
phase plane analysis@15#!; indeed, from it one generally ob-
tains an energylike equation@analogous to Eq.~4!# whose
physical solutions, representing stationary waves, are dis-
cussed qualitatively in Ref.@15# for different values of the
energylike quantity~constant of integration!. Thus one finds
that the solution~7c! is similar to kink solutions arising from
the sine-Gordon equation~cf. Ref. @15#!, for example.

Note thath5hc[0 is the critical value for the topologi-
cal change~symmetry breaking! in the shape of the corre-
sponding equivalent potential@cf. Eq. ~5!#. Therefore, one
would suppose that a rectangular forcing would satisfy,in-

termittently over time, the requirements of a GR if
F/A11.0. Indeed, let us assume thatxs(t)5A sn(vt;m)
is an intermittent-GR solution, i.e., that it should verify

dxs
dt

5hxs2xs
3 . ~10!

Using Ref.@11#, one straightforwardly obtains

dxs
dt

5@4AK~m!/T#cn~vt;m!dn~vt;m!, ~11!

hxs2xs
35A@h2A2sn2~vt;m!#sn~vt;m!, ~12!

where cn(vt;m) and dn(vt;m) are the Jacobian elliptic
functions@11# of parameterm. Now, it is possible to rewrite
~11! in the form

dxs
dt

5AS 2p

T DD* ~ t;T,m!dn~4Kt/T;m!

5AS 2p

T DD~ t;T/2,m!cn~4Kt/T;m!, ~13!

with
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D* ~ t;T,m![
2K

p
cn~4Kt/T;m!, ~14a!

D~ t;T,m![
2K

p
dn~2Kt/T;m!. ~14b!

These functions have the remarkable properties

D* ~ t;T,m50!5cos~2pt/T!, ~15a!

D* ~ t;T,m51!5d1,s~ t;T/2!, ~15b!

D~ t;T,m50!51, ~15c!

D~ t;T,m51!5d1,a~ t;T!, ~15d!

whered1,s(t;T/2) @d1,a(t;T)# is the symmetrical~asymmetri-
cal! periodicd function of periodT/2 (T), i.e., they provide
nonideal representations of periodic sequences of pulses.
Now, taking the limitm→1, we see that the right-hand side
~rhs! of ~13! vanishes on a set of points that has Lebesgue
measure zero@16#. This is also the case for the rhs of~12! if
we set

h5A2. ~16!

Therefore, a square-wave function of certain amplitudeA*
~see below! is an intermittent-GR response to~1! if the fol-
lowing cubic equation is satisfied@cf. Eqs.~8! and ~16!#:

A32A2F50. ~17!

Its solution provides the amplitude-response curve for thea
priori possible intermittent-GR responses and is illustrated in
Fig. 1. The expected solutionsxs(t)5A* sn(vt;m51) will
be observed only if they are stable, i.e., if any small pertur-
bation dx of xs is damped. Writingx5xs1dx, for dx!1
one gets~to first order!

d~dx!

dt
5@123h sn2~vt;m51!#dx, ~18!

with solutions@16#

dx~ t !5dx~0!e~123h!t. ~19!

Therefore, the above intermittent-GR responses will be
observed if and only ifA13F/2.0 @cf. Eq. ~8!#. That
sgn(A)Þsgn(F) means that the forcing and the rec-
tangular response are phase shifted by 2K~i.e., T/2
in time!. It is worth mentioning that over the range
FP]22A3/9,2A3/9@ one can expect the amplitude
A* of the rectangular responses to be given by
A*5(uAs,1u2uAs,2u)/2, whereAs,1 ,As,2 (uAs,1u.uAs,2u) are
the predicted~stable! solutions from the amplitude-response
relation @Eq. ~17!#. This can be understood by noting that
such solutions would represent stable pure GR responses@cf.
Eqs.~9! and ~16!#. Hence the expected response under rect-
angular driving will visit periodically those two equilibrium
states. On the other hand, foruFu.2A3/9, A* will be given
by the single solution of~17!, which may be understood as
the orbit exploring both wells, describing large amplitude
oscillations around the origin. The amplitude-response curve
shown in Fig. 1 indicates that the bistable system~1! sub-
jected to a rectangular forcing (m51) should~at GR! exhibit
a discontinuous transition between the two above-mentioned
periodic behaviors whenF is varied slowly. This discontinu-
ous jumping between the two stable~interior and exterior!
orbits is a consequence of the nonlinear amplitude-response
relation @Eq. ~17!#.

III. NUMERICAL RESULTS

The differential system~1! was integrated by using a
fourth-order Runge-Kutta method with time steps chosen in
the rangeDt50.001–0.005. In most of the numerical experi-
ments the rectangular forcing was approximated by the
sn(4Kt/T;m) driver withm51–10215, which was sufficient
for the present purposes~see Fig. 2!. ForT large enough and
m51–10215, the shape and period of the response coincide
very closely with those of the driving, i.e., it is an
intermittent-GR response. It is interesting to study the stabil-
ity of such responses under changes in the forcing period.
Figure 3 gives the time series of the displacement for in-
creasing values ofT. The associated limit cycles are plotted
in Fig. 4. In all cases, response and driving have the same
period ~usual resonance!. Observe that the intermittent-GR
response is approached asT increases. These numerical re-
sults are in agreement with the theoretical discussion of Sec.
II @cf. Eqs. ~12! and ~13!#. Indeed, as sn(4Kt/T;m51–
10215) is not exactly a square-wave function@cf. Eq. ~2!#,

FIG. 1. Amplitude-response curve@Eq. ~17!# for a rectangular
forcing at geometrical resonance~see the text!. The dashed line
indicates an unstable response.F andA are in arbitrary length units.

FIG. 2. Function sn(4Kt/T;m) vs t for T510 andm51–
1015; t is a dimensionless variable.
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the difference over time between~12! and ~13! is no longer
only on a set that has Lebesgue measure zero, but the value
of such a difference~at each instantt) decreases as
1/T→0, i.e., as the GR requirement is approached. Another
way to approach an intermittent-GR response involves fixing
the period and changing the forcing shape. Figure 5 shows
three time series of the velocity for increasing values ofm.
The corresponding limit cycles are plotted in Fig. 6. As the
forcing amplitude is relatively small (F50.1), the orbits are
confined to the initial well, near the bottom. Hence the sys-
tem presents a quasi-GR for a wide range of forcing shapes
~Fig. 5!. The approach to the exact intermittent-GR is char-
acterized by an increase in the velocity amplitude, while the
displacement amplitude remains constant~see Fig. 6! as
m→1. However, the temporal interval in which the velocity
amplitude is negligible increases asm→1. For F50.1
the amplitude-response relation~17! has the rootsAI
51.046 68,AII50.9456, andAIII520.101 031, and it is
found numerically thatA*.(AI1AII)/2 for all m values
considered, as expected from the discussion in Sec. II. There-
fore, when there is a confinement of the dynamics to close to
the bottom of one well (F!1), we can estimate analytically
the average energy of the orbit as a function of bothm and
T,

^E&[
1

TE0
T

$ 1
2 ẋ

2~ t !1U@x~ t !#%dt, ~20!

with U(x)52x2/21x4/4 andx(t)5A* sn(4Kt/T;m). After
some simple algebraic manipulation, Eq.~20! can be recast
into the form

^E&5
1

4K H 2KS 4KA*T D 22 A*
2

2 F11~11m!S 4KT D 2G
3E

0

4K

sn2~t!dt1
A*

2

2 FmS 4KT D 21 A*
2

2 G
3E

0

4K

sn4~t!dtJ . ~21!

The resulting integrals can be evaluated from standard tables
@17#. Finally, we obtain

^E&5
A*

2

2 H S 4KT D 224F11~11m!S 4KT D 2G~K2E!

m

1
4

3m2 @~21m!K22~11m!E#FA* 21mS 4KT D 2G J ,
~22!

whereE is the complete elliptic integral of the second kind.
For comparison with the pure GR responses~9!, a plot of
^E& vsm, for A*50.101 08 andT5100, is shown in Fig. 7.
It is clear that the average energy diminishes as the
intermittent-GR shape is approached~as expected!, since the
pure GR responses@Eq. ~9!# are equilibrium states in this
problem. Figure 8 illustrates the jumping phenomenon be-
tween the two rectangular~inner and outer! responses. The
distortion of the response asF crosses the critical value
Fc52A3/9 is due to the forcing not being exactly a square-
wave function (m51) @Eq. ~2!#.

IV. WEAK DAMPING:
GEOMETRICAL RESONANCE ANALYSIS

Let us study now the opposite limiting case—weak
damping—by considering the perturbed two-well Duffing

FIG. 3. Displacement time se-
ries for F50.1 and m51–
10215; t is a dimensionless vari-
able andx is in arbitrary length
units. ~a! T56, ~b! T511, ~c!
T531, and~d! T520p.

FIG. 4. Limit cycles corresponding to the time series in Fig. 3.
The period decreases from the inner orbit (T520p) to the external
orbit (T56). x anddx/dt are in arbitrary length units.
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equation (28). The application of Melnikov analysis~see,
e.g., Refs.@5,6#! yields @12# the Melnikov distance

D~t0!52
4d

3
6
4Fp3

A2 (
n50

`

an~m!bn~T!cosF ~2n11!2pt0
T G ,

~23!

an~m![cschF S n1
1

2DpK8

K G Y ~KAm!, ~24!

bn~T![~2n11!sech@~2n11!p2/T#/T, ~25!

with K8 the complementary complete elliptic integral of the
first kind @17#. From Eqs.~23!–~25!, one can see that a ho-
moclinic bifurcation,signifying the onset of chaos, is guar-
anteed for trajectories, the initial conditions of which are
sufficiently near the unperturbed separatrix

xsep~t!56A2 secht, ẋsep~t!56A2 secht tanht
~26!

if

d/F,U~m,T!, ~27!

where the threshold function is

U~m,T![
3A2p3

2 (
n50

`

an~m!bn~T!. ~28!

The upper~lower! sign in ~23! and~26! refers to the right
~left! homoclinic orbit. For the limiting cases of harmonic
@sin(Vt)5sn(Vt;m50)# and square-wave@m51, Eq.~2!#
forcing, one obtains, respectively,

U~m50,T!5
3p2A2
2T

sechS p2

T D , ~29!

U~m51,T!5
6pA2
T (

n50

`

sechF ~2n11!p2

T G , ~30!

with

lim
T→0

U~m50,T!5 lim
T→0

U~m51,T!50. ~31!

Since, as is well known@18#, Melnikov’s method predictions
are only valid for motions based at points sufficiently near
the separatrix of the unperturbed system, we will here con-
sider the GR concerning the separatrix~26! ~i.e., special orbit
with periodTsep5`). First, therefore, we need to obtain the

FIG. 5. Time series of the velocity forT520p and F50.1.
dx/dt is in arbitrary length units andt is a dimensionless variable.
~a! m50, ~b! m50.99, and~c! m51–10215.

FIG. 6. Limit cycles corresponding to the time series in Fig. 5.
The value ofm increases from the inner orbit (m50) to the exter-
nal orbit (m51–10215). x anddx/dt are in arbitrary length units.

FIG. 7. Average energy of the response^E& vsm @Eq. ~22!# for
A*50.101 08 andT5100. ^E& is in arbitrary squared length units
andm is a dimensionless variable. The points represent actual re-
sults and are connected by lines to guide the eye.

54 6157GEOMETRICAL RESONANCE IN A DRIVEN . . .



limits of the threshold functions~29! and ~30! whenT→`.
To this end, note that~30! can be rewritten@19#

U~m51,T!5
3A2
2 F112(

n51

`

~21!nsechS nT2 D G ~32!

and then@cf. Eqs.~29! and ~32!, respectively#

lim
T→`

U~m50,T!50, ~33!

lim
T→`

U~m51,T!53
A2
2
. ~34!

Equation~33! implies that in this limit chaotic behavior is
not possible because the harmonic forcing tends to zero.

Second, note that the forcing corresponding to a GR for
the separatrix~26! ~i.e., the forcing permitting the survival of
this separatrix@9#! is written

FRG,sep~t!57A2d secht tanht, ~35!

which cannot be recovered fromF sn@4Kt/T;m# for any
value of the parametersm,T. However, we can require the sn
forcing to be resonant~period! with either the interior or
exterior orbits of the unperturbed two-well Duffing oscillator
and then take the limitT→` to see how well the GR forcing
~35! is approximated depending on the shape of the resulting
functions. In this way, we will test the exclusive character-
istic of the GR ~shape! by calculating the corresponding
threshold functions@cf. Eq. ~27!#. The periods of the orbits
inside and outside the homoclinic orbits~26! are @18#, re-
spectively,

Tin~m!52K~m!A22m, ~36!

Tout~m!54K~m!A2m21. ~37!

It is obvious thatTin,out(m→1)→`. Therefore, we obtain

lim
m→1

sn@4Kt/Tin;m#5tanh~2t!, ~38!

lim
m→1

sn@4Kt/Tout;m#5tanh~t!. ~39!

It is straightforward to calculate@20# the associated threshold
functions@cf. Eq. ~27!# to the limiting cases~38! and ~39!:

U in~m→1,T5Tin!5
3p

2
~A221!, ~40!

FIG. 8. Time series of the displacement forT520p andm51–10215. x is in arbitrary length units andt is a dimensionless variable.~a!
F50.1, ~b! F52A3/9, ~c! F50.395, and~d! F51.

FIG. 9. Functionu12 f (t)/secht tanhtu vs t (t is a dimension-
less variable! for ~a! f (t)5 limT→`sgn@sin(2pt/T)# @cf. Eq. ~2!#,
~b! f (t)5tanh(2t) @Eq. ~38!#, and~c! f (t)5tanht @Eq. ~39!#.
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Uout~m→1,T5Tout!5
3A2
2 S p

4 D . ~41!

By comparing now Eq.~34! with Eqs. ~40! and ~41! one
findsUSW.U in.Uout, i.e., the range ofd/F for the onset of
chaos is broader for the square wave out of resonance~pe-
riod! than for the inner orbit resonant case, which, in turn, is
broader than the exterior case. As all these results are ob-
tained forT5`, one expects that they could be explained in
terms of how near or far the shape~of the limiting forcings!
is from the GR forcing shape. This is shown in Fig. 9, where
the relative differenceu12 f (t)/secht tanhtu vs t for the
functions f (t)5$ limT→`sgn@sin(2pt/T)#, tanh(2t),
tanh(t)% @cf. Eqs.~2!, ~38!, and~39!, respectively# is plotted.
Note that the consequences deriving from the plots are in
complete agreement with the above threshold function rela-
tionship, i.e., the closer the GR forcing shape is approached,
the narrower the range ofd/F for the onset of chaos.

V. CONCLUSION

In this paper, first, I have investigated the stability of the
responses of an overdamped bistable system under a periodic
forcing of rectangular shape. The analysis shows that the
preservation of responses with the same period and shape as
the forcing is a consequence of a GR phenomenon. A jump
phenomenon was derived theoretically, characterizing the
discontinuous transition between GR motion confined within
a well and GR motion around the two wells. In addition, for
motion near the bottom of a well, an analytical expression
was obtained for the average energy of the GR orbits, indi-
cating that this energy decreases asm→1, i.e., as the square-
wave shape is approached. Numerical experiments confirmed
all the theoretical results. Second, for the weak damping
case, there was shown to be a reduction~in parameter space!
of homoclinic chaos as the driving shape approaches the GR
forcing shape. It is thus clear that the GR concept provides a
powerful tool with which to investigate the dynamics arising
from a nonlinearly driven system where the usual~period!
resonance analysis seems to be powerless.
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