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Geometrical resonance in a driven symmetric bistable system
subjected to strong or to weak damping
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The response of a symmetric bistable system driven by a time-periodic rectangular force modeled by the
Jacobian elliptic function sn is studied in two limiting situations: overdamping and weak damping. For the
overdamping case, the appearance of responses with the same shape and period as the driving force is ex-
plained in terms of geometrical resonancghenomenon. The distortion of the response under changes in the
forcing period and shape is also considered. For weak damping, the reduction of homoclinic chaos as the
driving shape approximates the geometrical resonance forcing shape is explained by means of Melnikov's
analysis in the asymptotic case of infinite period drivif§1063-651X%96)08912-X]

PACS numbd(s): 05.45+b

I. INTRODUCTION 1

4 < _
snwt;m=1)=— ngo SN (2n+1)27t/T], (2)

Resonance is a key concept throughout the physical sci-

ences and engineering. From Galileo’s initial discussion in btains the Fouri . ¢
1638 [1] to applications in highly nonlinear oscillators, l.e., one obtains the Fourier expansion of Bwiare wave

where the response to harmonic driving forces can be detewnCtio.n of periodT_ [12]. With T constant, only the fgrcing
mined using various methodi2—-6], the notion of resonance shape is vaned. by mcreasmgfrom 0 t.o 1, and there is thus
(nonlinear resonangéas been identified with how well the & SMooth transition from a sine function to a square wave. In
driving periodTy fits (a rational fraction ofa natural period Ref. [13], the corresponding forcing term 1) was an ap-

T, of the underlying conservative system. Indeed, nonlineaPfoximation to a rectangular signal with amplituéeand

resonance arisdd] as the direct extension of the usual con- Per'OdT’ generated by a Fourle_r series with 20 odd harmon-
s. The authors found numerically that, for each value of

cept in the linear limiting case, where the resonance responsg . ; .
is regarded as the largest response, to the nonliigesmera) T, there *eX'StS a c_orr(_espondlng amphtqaé(T) _su_ch th"’!‘ :
case, where, on the contrary, the response to harmonic drife’ F<F* the motion is fssennally confined within the ini-
ing forces is typically small and complicatég]. Recently, it ! well, while for F>F* the system trajectories explore
has been propose®] that the so-called geometrical reso- both yvglls, describing Iargg-gmpl_ltudf oscillations around
nance (GR) should really be considered the naturalfly ~ the origin. Away from the critical liné=*(T), the shape of
nonlinear extension of the usual concept. For systems witiN® response coincides basically with that of the forcing,
periodic motions, GR means that the amplitude, period, an¥/nile néar the critical line the output has a very distorted
wave form(shapé of the driving signal must suitably fit to Shape, though it is still periodic with the same peribdAs
preservea previously chosen natural periodic response fromVill be shown, these results naturally arise from an analysis
the underlying conservative system, if dissipation is consid®f the GR responses. ,

ered, or from an equivalent conservative system for driven 1h€ second goal of this paper is to demonstrate, for the
Hamiltonian systems. In both cases, the GR condition is de/€ak damping limiting case, that the stability of homoclinic

rived from alocal energy conservation requireme#t. chaos arising from the whole bistable system
In this work | first attempt to explain and extend some . g o
previous results, obtained numerically, by using the notion of X=X=X>=6X+F snQm;m) )

GR. The system to be studied is an overdamped bistable
model[10] subjected to an external periodic modulation  [x=dx/d7, 0<4, F<1, Q=Q(m)=4K(m)/T], as the
driving shape is varied, is also explained in terms of GR.
The rest of the paper is organized as follows. Section Il
gives the results concerning the GR analysis of the bistable
system(1), where the forcing term is initially taken to be an
where snft;m)is the Jacobian elliptic function of parameter indefinite T-periodic function. Further, it is demonstrated
m and periodl [w=w(m)=4K(m)/T with K(m) the com-  that when the forcing is given by a square wave function the
plete elliptic integral of the first kinflL1]]. Whenm=0, then =GR requirements are almost exactly satisfied and an
sn(wt;m=0)=sin(wt), i.e., one recovers the limit case of amplitude-responseurve is deduced that indicates that the

dx
azx—x3+F s wt;m), (1)

harmonic forcing. In the other limit, bistable system should, near a certain GR, exhibit a jump
phenomenon. In Sec. lll, a numerical study illustrates the
accuracy and scope of the theoretical derivations. Section IV

*Electronic address: rchacon@unex.es is devoted to analyzing the decrea@e parameter spage
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of homoclinic chaos arising from the symmetric bistable sys-consider the specidkteady solutionsxg(t), with amplitude

tem (namely, the two-well Duffing oscillatof3,5]), sub-

A, such thatx¢(t)=Af(t), i.e., when the external excitation

jected to both weak damping and small-amplitude sn forcingand the response have both the same peimilial reso-

[Eqg.(2")], whenm—1 andT—oo. It is shown theoretically,

nancg and the same shape, including when the natural re-

by using Melnikov’s method, that the mechanism underlyingsponses are not periodic. Under this assumption, the dynam-
the regularization of the dynamics is the approximation to dcs is equivalent to that of a particle having total enekgy
GR solution. Finally, Sec. V includes a summary of the re-given by

sults and conclusions.

Il. OVERDAMPING:
GEOMETRICAL RESONANCE ANALYSIS

Without regard for any specific physical context at the

outset, let us begin with the overdamped model

dx
—=—U'"(X)+Ff(t),

at )

wheref(t) is ana priori arbitrary T-periodic function with

unit amplitude and the prime refers to the derivative of the
arbitrary potentiald(x). Observe that the precise character-

E=3x2+Ug{Xs) = const,

(4)
with

F 2
K Xs— u’ (Xs)

UedXs)=— ©)

the equivalent potentigl14]. With E=0 (the system is over-
dampedl one directly obtains the solutions corresponding to
the general modeg(3),

dx

Jxo FXIA—U(x) U ®)

istic of the GR, for a general system to be driven, is that of

preservinga given natural respongehether periodic or not

For the two-well potentia[cf. Eq. (1)], the particular re-

of the unperturbed system. Now, with that in mind, let ussponseg6) are

r | | X2 1/4
7 0 ,
N2 © 172 csch (| plt—3In[x3/ (| ol +x§)1},  #<0 (7a)
x(t)={ *X[1+2x3t] Y2 5=0 (7b)
7 Xg 1/4
\ + \[E — e"2sech yt+ 3In[x3/ (n—x3)1}, 7>0, (79
|
with x(t=0)= *Xx,, and termittently over time the requirements of a GR if
F/A+1>0. Indeed, let us assume thaf(t)=A sn(wt;m)
_ F is an intermittent-GR solution, i.e., that it should verify
77=1+ K (8)
dxs 3
Observe that the asymptotic behavior is that of equilibrium FTEAIRSE (10
states
Using Ref.[11], one straightforwardly obtains
| 0, #5=0 ©
imx(t)=x4(t)= 9 dx
e N7 =0, —= =[4AK(M)Tlen(wt; mydn(wt;m), (1D
which do not depend on the initial conditiogq. It is worth
mentioning that the above scheme is similar to that employed nXs— Xo=A[ n— A2srP( wt;m)]sn ot;m), (12

in seeking traveling waves of permanent fothe so-called

phase plane analysj45]); indeed, from it one generally ob- where cnpt;m) and dnet;m) are the Jacobian elliptic

tains an energylike equatigmnalogous to Eq(4)] whose

functions[11] of parametem. Now, it is possible to rewrite

physical solutions, representing stationary waves, are digidl) in the form

cussed qualitatively in Refl5] for different values of the
energylike quantityconstant of integration Thus one finds
that the solutio(7c¢) is similar to kink solutions arising from
the sine-Gordon equatiof. Ref.[15]), for example.

Note thatn= 7.=0 is the critical value for the topologi-
cal change(symmetry breakingin the shape of the corre-
sponding equivalent potentigtf. Eq. (5)]. Therefore, one
would suppose that a rectangular forcing would satisfy,

dXS—A 2
dt VT

) D*(t;T,m)dn(4Kt/T;m)

N

w

A(?) D(t;T/2,m)cn(4Kt/T;m),

(13

with
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2.0 SX(t)=ox(0)elt 37, (19
i Therefore, the above intermittent-GR responses will be

1.0 // observed if and only ifA+3F/2>0 [cf. Eq. (8)]. That
: sgn(d) #sgnfF) means that the forcing and the rec-

1 N : tangular response are phase shifted by Z2Zike., T/2
0.0 - . ~ . in time). It is worth mentioning that over the range
A : \\; Fe]—-243/9,2/3/9 one can expect the amplitude
: A* of the rectangular responses to be given by

-1.07 / A*:(|As,l|_|As,2|)/Za WhereAs,laAs,Z (|As,1|>|As,2|) are

the predictedstable solutions from the amplitude-response
relation [Eq. (17)]. This can be understood by noting that
2.0 — T such solutions would represent stable pure GR respdnfes
-0.8 0.4 0.0 0.4 0.8 Egs.(9) and(16)]. Hence the expected response under rect-
F angular driving will visit periodically those two equilibrium
states. On the other hand, fiéf|>2/3/9, A* will be given
FIG. 1. Amplitude-response curnj&q. (17)] for a rectangular  py the single solution of17), which may be understood as
forcing at geometrical resonandeee the tejt The dashed line the orhit exploring both wells, describing large amplitude
indicates an unstable responBeandA are in arbitrary length units.  ggcillations around the origin. The amplitude-response curve
shown in Fig. 1 indicates that the bistable systeithsub-
jected to a rectangular forcingn= 1) should(at GR exhibit
a discontinuous transition between the two above-mentioned
periodic behaviors wheh is varied slowly. This discontinu-
K ous jumping between the two stabliaterior and exterior
D T.m= 7dn(2Kt/T;m). (14D orbits is a consequence of the nonlinear amplitude-response
relation[Eq. (17)].

2K
D*(t;T,m)E7cn(4Kt/T;m), (149

These functions have the remarkable properties
lll. NUMERICAL RESULTS

D*(t;T,m=0)=coq2xt/T), (159
The differential system(1) was integrated by using a
D*(;T,m=1)=5,4(t;T/2), (150 fourth-order Runge-Kutta method with time steps chosen in
the rangeAt=0.001-0.005. In most of the numerical experi-
D(t;T,m=0)=1, (150  ments the rectangular forcing was approximated by the
sn(4Kt/T;m) driver withm=1-10"15 which was sufficient
DG;T,m=1)=614(t;T), (150 for the present purposésee Fig. 2 ForT large enough and

m=1-10 15 the shape and period of the response coincide
very closely with those of the driving, i.e., it is an

éntermittent—GR response. It is interesting to study the stabil-
ity of such responses under changes in the forcing period.
é:igure 3 gives the time series of the displacement for in-
Creasing values of. The associated limit cycles are plotted

in Fig. 4. In all cases, response and driving have the same

whered; «(t;T/2) [ 6, 4(t;T)] is the symmetricalasymmetri-
cal) periodic § function of periodT/2 (T), i.e., they provide
nonideal representations of periodic sequences of pulse
Now, taking the limitm— 1, we see that the right-hand side
(rhg of (13) vanishes on a set of points that has Lebesgu
measure zerpl6]. This is also the case for the rhs @) if

we set period (usual resonange Observe that the intermittent-GR
n=A2 (16) response is approached Bdncreases. These numerical re-
sults are in agreement with the theoretical discussion of Sec.
Therefore, a square-wave function of certain amplitdéde Il [cf. Egs. (12) and (13)]. Indeed, as sn{dt/T;m=1-—
(see belowis an intermittent-GR response (i) if the fol- 10" %) is not exactly a square-wave functi¢af. Eq. (2)],
lowing cubic equation is satisfiddf. Egs.(8) and(16)]:
A3—A—F=0. (17) 15
1.0 -
Its solution provides the amplitude-response curve forahe B o5
priori possible intermittent-GR responses and is illustrated in g 0.0 ]
Fig. 1. The expected solutiong(t) =A* sn(wt;m=1) will Mo
be observed only if they are stable, i.e., if any small pertur- El 057
bation 6x of X, is damped. Writingx=x+ 6x, for ox<1 -1.0
one getgto first ordej R e e e  am ma !
0 2 4 6 8 10
d(ox) t

—5r =[1-37 srt(wt;m=1)]6x, (18

FIG. 2. Function sn(Kt/T;m) vst for T=10 andm=1-
with solutions[16] 10'% t is a dimensionless variable.
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t t 1075 t is a dimensionless vari-
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the difference over time betwedf2) and(13) is no longer  The resulting integrals can be evaluated from standard tables
only on a set that has Lebesgue measure zero, but the val{iE7]. Finally, we obtain
of such a difference(at each instantt) decreases as
1/T—0, i.e., as the GR requirement is approached. Another A*2 4K 4K\ ?](K—E)
way to approach an intermittent-GR response involves fixing (€)= 2 [( ?) } m
the period and changing the forcing shape. Figure 5 shows
three time series of the velocity for increasing valuesrof 4 2 4K \?
The corresponding limit cycles are plotted in Fig. 6. As the + 3l (2+mK-2(1+ m)E][A* +m 7) H
forcing amplitude is relatively small{=0.1), the orbits are
confined to the initial well, near the bottom. Hence the sys- (22)
tem presents a quasi-GR for a wide range of forcing shapes ) o .
(Fig. 5). The approach to the exact intermittent-GR is charWhereE is the com_plete elliptic integral of the second kind.
acterized by an increase in the velocity amplitude, while thé™ O comparison with the pure GR respong8y a plot of
displacement amplitude remains constésée Fig. 6 as (£ vsm, for A*=0.101 08 andr =100, is shown in Fig. 7.
m— 1. However, the temporal interval in which the velocity It 1S clear that the average energy diminishes as the
amplitude is negligible increases as—1. For F=0.1 intermittent-GR shape is approach(ar_t_ expecte)d since th?
the amplitude-response relatiofl7) has the rootsA, Puré GR responselEq. (9)] are equilibrium states in this
=1.046 68, A, =0.9456, andA, =—0.101031, and it is problem. Figure 8 |Ilustrapes the jumping phenomenon be-
found numerically thatA*=(A+A,)/2 for all m values tv.veen.the two rectanguldmner and outerrequnses. The
considered, as expected from the discussion in Sec. II. Therdistortion of the response & crosses the critical value
fore, when there is a confinement of the dynamics to close th<=213/9 is due to the forcing not being exactly a square-
the bottom of one wellf<1), we can estimate analytically Wave function (n=1) [Eq. (2)].
the average energy of the orbit as a function of hotland
T, IV. WEAK DAMPING:

GEOMETRICAL RESONANCE ANALYSIS

2
~4

T 1+(1+m)

17 . Let us study now the opposite limiting case—weak
= riy2
<g>_Tfo{2X (O +UIx(®]1dt, (20 damping—by considering the perturbed two-well Duffing
with U(x) = —x%/2+ x*/4 andx(t) = A*sn(4Kt/T;m). After 0.2
some simple algebraic manipulation, Eg0) can be recast i
into the form 0.1
& 0.0
5_12K4KA*2A*21 . 4K\ 2 X
=2k T T A -0.1]
4K A [ak\? A*? 02—
Xfo sP(r)dr+ —=|m| -] +— 090 095 100 105

X
FIG. 4. Limit cycles corresponding to the time series in Fig. 3.
] ) (21)  The period decreases from the inner orfdit{20m) to the external

4K
X f srf(7)dr _ _ ; _
orbit (T=6). x anddx/dt are in arbitrary length units.

0
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FIG. 5. Time series of the velocity fof=207 and F=0.1.
dx/dt is in arbitrary length units antis a dimensionless variable.
(@ m=0, (b) m=0.99, and(c) m=1-10"15.

equation (2). The application of Melnikov analysitsee,
e.g., Refs[5,6]) yields[12] the Melnikov distance

45 AFm3C 2n+1)2
A(rg)=— 5+ é nzo an(m)bn(T)co{m,
(23
J— 1 '
an(m)=cscf}| n+ 5| — (K+y/m), (24)

by(T)=(2n+1)sechi(2n+1) 72/ T]IT, (25)
with K’ the complementary complete elliptic integral of the
first kind [17]. From Egs.(23)—(25), one can see that a ho-
moclinic bifurcation,signifying the onset of chaps guar-
anteed for trajectories, the initial conditions of which are
sufficiently near the unperturbed separatrix

Xsed 7)== 2 SECIT,  Xeef 7)== \2 sechr tanhr
(26)

SIF<U(m,T), 27)
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0.10 —

X

0.00 —

O I L B I
0.92 0.96 100 1.04 1.08

X

FIG. 6. Limit cycles corresponding to the time series in Fig. 5.
The value ofm increases from the inner orbiin=0) to the exter-
nal orbit (m=1-101%. x anddx/dt are in arbitrary length units.

where the threshold function is

3 ®

> ay(mby(T).

n=0

3V2w
U(m,T)==>

(28)

The upper(lower) sign in(23) and(26) refers to the right
(left) homoclinic orbit. For the limiting cases of harmonic
[sin(Q27) =sn(Q 7;m=0)] and square-wavem=1, Eq.(2)]
forcing, one obtains, respectively,

2 2
U(m=0,T)=%§secV6% , 29)
o 2
U(m=1,T)=6:_ﬁ203ec+w} 30
with
IMU(m=0,T)=IimU(m=1T)=0. (31

T—0 T—0

Since, as is well knowfil 8], Melnikov’s method predictions
are only valid for motions based at points sufficiently near
the separatrix of the unperturbed system, we will here con-
sider the GR concerning the separat@®) (i.e., special orbit
with period Tse=¢). First, therefore, we need to obtain the

0.00

-0.02 —

-0.04

<Energy>

-0.06

-0.08 e
0.00 025 050 0.75

m

1.00

FIG. 7. Average energy of the respor(s® vs m [Eq. (22)] for
A*=0.101 08 andT =100.(&) is in arbitrary squared length units
andm is a dimensionless variable. The points represent actual re-
sults and are connected by lines to guide the eye.
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FIG. 8. Time series of the displacement o= 207 andm=1-10 15 x is in arbitrary length units andis a dimensionless variablé)

F=0.1,(b) F=2./3/9, (c) F=0.395, andd) F=1.

limits of the threshold function§29) and (30) whenT—co,
To this end, note that30) can be rewritterj19]

U(m=l,T):%E

1+ 221 (— 1)“sec?{ %r) } (32)

and thencf. Egs.(29) and(32), respectively

To%m)=4K(m)y2m—1.
It is obvious thafT™“(m— 1)— . Therefore, we obtain

lim s{4K7/T"m]=tanh27),

m—1

lim sM4K /T m]=tanh 7).

m—1

(37

(39

(39

It is straightforward to calculate20] the associated threshold

limU(m=0,T)=0, (33
T—o
ImU(m=1T)= 3?. (39

T—oo

Equation(33) implies that in this limit chaotic behavior is
not possible because the harmonic forcing tends to zero.

Second, note that the forcing corresponding to a GR for
the separatrix26) (i.e., the forcing permitting the survival of
this separatrif9]) is written

Fro.sef 7) = T 128 sechr tanhr, (35)

which cannot be recovered frofa s 4K7/T;m] for any
value of the parameters, T. However, we can require the sn
forcing to be resonantperiod with either the interior or
exterior orbits of the unperturbed two-well Duffing oscillator
and then take the limit — <o to see how well the GR forcing
(35) is approximated depending on the shape of the resulting
functions. In this way, we will test the exclusive character-
istic of the GR (shape by calculating the corresponding
threshold functiongcf. Eq. (27)]. The periods of the orbits
inside and outside the homoclinic orbi{86) are [18], re-
spectively,

Ur(m—1T=T")= 3777( J2-1),

10.0

functions[cf. Eq. (27)] to the limiting case$38) and (39):

(40)

8.0 —

6.0 —

4.0

2.0

| 1-f(7)/(sech(z)tanh(7)) |

0.0

(a)

(b)

©

0.0

i
1.0

T

2.0 3.0

FIG. 9. Functior|1— f(7)/sechr tanhr| vs 7 (7 is a dimension-

less variablg for (a) f(7)=Ilim;_.sgrisin(277/T)] [cf. Eq. (2)],

T"(m)=2K(m)y2—m, (36)

(b) f(7)=tanh(2r) [Eq. (38)], and(c) f(7)=tanhr [Eq. (39)].
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3V2[m
U°“‘(m—>1,T=T°”‘)=—\/_(— :

2 \4

V. CONCLUSION
I

In this paper, first, | have investigated the stability of the
responses of an overdamped bistable system under a periodic
forcing of rectangular shape. The analysis shows that the
By comparing now Eq(34) with Egs. (40) and (41) one  Preservation of responses with the same period and shape as
finds USW=U">U j.e., the range of/F for the onset of the forcing is a consequence of a GR phenomenon. A jump

chaos is broader for the square wave out of resongpee phenomenon was derived theoretically, characterizing the

discontinuous transition between GR motion confined within

riod) than for the inner orbit resonant case, which, in turn, IS, well and GR motion around the two wells. In addition, for

brpader than the exterior case. As all these results. are .Ol?ﬁotion near the bottom of a well, an analytical expression
tained forT=cc, one expects that they could be explained inwas obtained for the average energy of the GR orbits, indi-
terms of how near or far the shapef the limiting forcing$  cating that this energy decreaseswas 1, i.e., as the square-

is from the GR forcing shape. This is shown in Fig. 9, wherewave shape is approached. Numerical experiments confirmed
the relative differencél—f(7)/sechr tanhr| vs 7 for the all the theoretical results. Second, for the weak damping
functions  f(7)={lim;_.,sgrsin(277/T)], tanh(2r), case, there was shown to be a reductiorparameter spage
tanh(r)} [cf. Egs.(2), (38), and(39), respectivelyis plotted.  of homoclinic chaos as the driving shape approaches the GR
Note that the consequences deriving from the plots are iforcing shape. It is thus clear that the GR concept provides a
complete agreement with the above threshold function relapowerful tool with which to investigate the dynamics arising
tionship, i.e., the closer the GR forcing shape is approachedrom a nonlinearly driven system where the us(aériod

the narrower the range @/F for the onset of chaos. resonance analysis seems to be powerless.
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